Tissue penetration of antimicrobials: Difference between revisions
From IDWiki
(→) |
No edit summary |
||
Line 140: | Line 140: | ||
| style="text-align:center" | + |
| style="text-align:center" | + |
||
|- |
|- |
||
− | |[[Fluoroquinolones]] |
+ | | rowspan="2" |[[Fluoroquinolones]] |
− | | style="text-align:center" | |
+ | | style="text-align:center" |all |
| style="text-align:center" | |
| style="text-align:center" | |
||
| style="text-align:center" |–? |
| style="text-align:center" |–? |
||
Line 148: | Line 148: | ||
| style="text-align:center" | + |
| style="text-align:center" | + |
||
| style="text-align:center" | + |
| style="text-align:center" | + |
||
+ | |- |
||
+ | |[[moxifloxacin]] |
||
+ | | |
||
+ | | |
||
+ | | |
||
+ | |– |
||
+ | | |
||
+ | | |
||
|- |
|- |
||
|[[Fosfomycin]] |
|[[Fosfomycin]] |
Revision as of 12:57, 7 June 2023
Summary
- † if inflammation present
- ‡ very low levels, but likely enough for Enterococcus
Specific Tissues
Central Nervous System
- Reviewed in 1
Class | Antimicrobial | CSF Penetration (AUC) | With Meningeal Inflammation |
---|---|---|---|
Antibiotics | |||
penicillins | overall | 2% | 2% |
ampicillin | |||
amoxicillin | 6% | ||
cloxacillin | 0.87% | ||
piperacillin | 3% | 32% | |
beta lactamase inhibitors | overall | 7% | 10% |
clavulanate | 4% | 8% | |
tazobactam | 11% | ||
cephalosporins | overall | 0.7 to 10% | 15% |
cefotaxime | 12% | 4 to 17% | |
ceftriaxone | 0.7% | ||
ceftazidime | 0.6% | ||
carbapenems | overall | 20% | 30% |
imipenem | 14% | ||
meropenem | 5 to 25% | 39% | |
aminoglycosides | overall | 20% | |
fluoroquinolones | overall | 30 to 70% | 70 to 90% |
ciprofloxacin | 24 to 43% | 92% | |
levofloxacin | 71% | ||
moxifloxacin | 46% | 79% | |
chloramphenicol | 60 to 70% | 60 to 70% | |
macrolides | clarithromycin | 18% | |
tetracyclines | doxycycline | 20% | 20% |
fosfomycin | 18% | ||
linezolid | 90% | ||
metronidazole | 87% | ||
rifamycins | rifampin | 22% | |
trimethoprim-sulfamethoxazole | trimethoprim | 18% | 42 to 51% |
sulfamethoxazole | 12% | 24 to 30% | |
glycopeptides | vancomycin | 14 to 18% | 30% |
antituberculosis medications | isoniazid | 86% | |
Antivirls | |||
anti-herpes nucleoside analogues | acyclovir | 31% | |
valacyclovir | 19% | ||
foscarnet | 27 to 43% | 23 to 66% | |
HIV antiretrovirals | abacavir | 35% | |
zidovudine | 75% | ||
indinavir | 6 to 15% | ||
lopinavir | 29% | ||
Antifungals | |||
flucytosine | 74% | ||
azoles | fluconazole | 86% | |
voriconazole | 46% | ||
polyenes | amphotericin B | low | |
Antiparasitics | |||
albendazole | 38 to 43% | ||
praziquantel | 24% | ||
sulfadiazine | 27 to 33% |
Prostate
- Poorly penetrated by most antibiotics
- Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
- Fluoroquinolones are the mainstay of therapy, though there is increasing resistance
- TMP-SMX often used, though conflicting data about its penetration into the prostate
- Minocycline, doxycycline, and macrolides achieve high levels in the prostate but are rarely indicated for the causative organisms
- Third-generation cephalosporins and carbapenems can be used
- Piperacillin, aztreonam, imipenem, and some aminoglycosides are likely useful
Bone
- Essentially all antibiotics achieve similar bone-to-serum levels, with the exception of oral β-lactams which nevertheless have no worse outcomes2
Eye
- Ocular compartments include anterior and posterior
- Anterior includes aqeous humour, and is best accessed using topical medications
- Posterior includes vitreous humour, retina, and choroid, and is best accessed using intravitreal or systemic medications
- Penetration of systemic antimicrobials into retina and vitreous is poor (~0 to 2%), but is better with inflammation3
- Preferred agents for vitreal penetration include meropenem, linezolid, and moxifloxacin
- Agents that are likely effective, especially when inflammation is present, include vancomycin, cefazolin, ceftriaxone, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole, and possible daptomycin and rifampin
- Agents that do not reach adequate levels include ciprofloxacin, levofloxacin, aminoglycosides, aminopenicillins, piperacillin, cefepime, and clarithromycin
Class | Antimicrobial | Retinal Penetration | Vitreal Penetration | Ref |
---|---|---|---|---|
Antibiotics | ||||
penicillins | ampicillin | below MIC in non-inflamed rabbit eyes | 3 | |
amoxicillin | 2% (below MIC) in non-inflamed rabbit eyes | 3 | ||
piperacillin | undetectable in inflamed human eyes | 3 | ||
cephalosporins | cefazolin | above MIC in inflamed rabbit eyes | 3 | |
ceftriaxone | 4% in non-inflamed human eyes | 3 | ||
ceftazidime | 30% in inflamed rabbit eyes | 3 | ||
cefipime | 8% in non-inflamed human eyes | 3 | ||
carbapenems | imipenem | 8 to 10% in non-inflamed human eyes | 3 | |
meropenem | 30% in non-inflamed human eyes | 3 | ||
oxazolidinones | linezolid | 30 to 80% in non-inflamed human eyes | 3 | |
vancomycin | above MIC in inflamed rabbit eyes | 3 | ||
daptomycin | 30% in inflamed human eyes | 3 | ||
aminoglycosides | amikacin | below MIC in inflamed rabbit eyes | 3 | |
gentamicin | below MIC in inflamed rabbit eyes | 3 | ||
fluoroquinolones | ciprofloxacin | below MIC in non-inflamed human eyes | 3 | |
levofloxacin | 30% but below MIC in non-inflamed human eyes | 3 | ||
moxifloxacin | 10 to 40% and above MIC in non-inflamed human eyes | 3 | ||
Antifungals | ||||
azoles | fluconazole | 40 to 50% | 40 to 50% | 45 |
itraconazole | 10% in inflamed eyes | 5 | ||
posaconazole | 20% in inflamed eyes | 5 | ||
voriconazole | 40 to 100% | 5 | ||
flucytosine | 40 to 100% | 5 | ||
polyenes | liposomal amphotericin B | only detectable in inflamed eyes | 5 | |
echinocandins | echinocandins | very low penetration | 5 | |
micafungin | excellent | undetectable | 45 | |
Antivirals | ||||
acyclovir | above IC | |||
valacyclovir | 20 to 30%, above IC in non-inflamed human eyes | 6 | ||
ganciclovir | close to IC | |||
foscarnet | 100% | 10%, close to IC | 7 |
References
- ^ Tomasz Jodlowski, Charles R Ashby, Sarath G Nath. Doxycycline for ESBL-E Cystitis. Clinical Infectious Diseases. 2020. doi:10.1093/cid/ciaa1898.
- a b c d e f g h i Timothy Felton, Peter F. Troke, William W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.
- ^ nau2010pe
- ^ Cornelia B. Landersdorfer, Jürgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz Sörgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
- a b c d e f g h i j k l m n o p q r L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
- a b Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
- ^ Tony H. Huynh, Mark W. Johnson, Grant M. Comer, Douglas N. Fish. Vitreous Penetration of Orally Administered Valacyclovir. American Journal of Ophthalmology. 2008;145(4):682-686. doi:10.1016/j.ajo.2007.11.016.
- ^ Luis F. López-Cortés, R. Ruiz-Valderas, M. J. Lucero-Muñoz, E. Cordero, M. T. Pastor-Ramos, J. Marquez. Intravitreal, Retinal, and Central Nervous System Foscarnet Concentrations after Rapid Intravenous Administration to Rabbits. Antimicrobial Agents and Chemotherapy. 2000;44(3):756-759. doi:10.1128/aac.44.3.756-759.2000.