Tissue penetration of antimicrobials: Difference between revisions

From IDWiki
Line 312: Line 312:
 
!Class
 
!Class
 
!Antimicrobial
 
!Antimicrobial
  +
!Retinal Penetration
 
!Vitreal Penetration
 
!Vitreal Penetration
  +
!Ref
  +
|-
  +
! colspan="5" |Antibiotics
 
|-
 
|-
 
| rowspan="3" |penicillins
 
| rowspan="3" |penicillins
 
|[[ampicillin]]
 
|[[ampicillin]]
  +
|
 
|below MIC in non-inflamed rabbit eyes
 
|below MIC in non-inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[amoxicillin]]
 
|[[amoxicillin]]
  +
|
 
|2% (below MIC) in non-inflamed rabbit eyes
 
|2% (below MIC) in non-inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[piperacillin]]
 
|[[piperacillin]]
  +
|
 
|undetectable in inflamed human eyes
 
|undetectable in inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
| rowspan="4" |cephalosporins
 
| rowspan="4" |cephalosporins
 
|[[cefazolin]]
 
|[[cefazolin]]
  +
|
 
|above MIC in inflamed rabbit eyes
 
|above MIC in inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[ceftriaxone]]
 
|[[ceftriaxone]]
  +
|
 
|4% in non-inflamed human eyes
 
|4% in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[ceftazidime]]
 
|[[ceftazidime]]
  +
|
 
|30% in inflamed rabbit eyes
 
|30% in inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[cefipime]]
 
|[[cefipime]]
  +
|
 
|8% in non-inflamed human eyes
 
|8% in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
| rowspan="2" |carbapenems
 
| rowspan="2" |carbapenems
 
|[[imipenem]]
 
|[[imipenem]]
  +
|
 
|8 to 10% in non-inflamed human eyes
 
|8 to 10% in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[meropenem]]
 
|[[meropenem]]
  +
|
 
|30% in non-inflamed human eyes
 
|30% in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|oxazolidinones
 
|oxazolidinones
 
|[[linezolid]]
 
|[[linezolid]]
  +
|
 
|30 to 80% in non-inflamed human eyes
 
|30 to 80% in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|
 
|
 
|[[vancomycin]]
 
|[[vancomycin]]
  +
|
 
|above MIC in inflamed rabbit eyes
 
|above MIC in inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|
 
|
 
|[[daptomycin]]
 
|[[daptomycin]]
  +
|
 
|30% in inflamed human eyes
 
|30% in inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
| rowspan="2" |aminoglycosides
 
| rowspan="2" |aminoglycosides
 
|[[amikacin]]
 
|[[amikacin]]
  +
|
 
|below MIC in inflamed rabbit eyes
 
|below MIC in inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[gentamicin]]
 
|[[gentamicin]]
  +
|
 
|below MIC in inflamed rabbit eyes
 
|below MIC in inflamed rabbit eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
| rowspan="3" |fluoroquinolones
 
| rowspan="3" |fluoroquinolones
 
|[[ciprofloxacin]]
 
|[[ciprofloxacin]]
  +
|
 
|below MIC in non-inflamed human eyes
 
|below MIC in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[levofloxacin]]
 
|[[levofloxacin]]
  +
|
 
|30% but below MIC in non-inflamed human eyes
 
|30% but below MIC in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
 
|-
 
|-
 
|[[moxifloxacin]]
 
|[[moxifloxacin]]
  +
|
 
|10 to 40% and above MIC in non-inflamed human eyes
 
|10 to 40% and above MIC in non-inflamed human eyes
  +
|[[CiteRef::brockhaus2019re]]
  +
|-
  +
! colspan="5" |Antifungals
  +
|-
  +
| rowspan="4" |azoles
  +
|[[fluconazole]]
  +
|40 to 50%
  +
|40 to 50%
  +
|[[CiteRef::suzuki2008oc]][[CiteRef::felton2014ti]]
  +
|-
  +
|[[itraconazole]]
  +
|
  +
|10% in inflamed eyes
  +
|[[CiteRef::felton2014ti]]
  +
|-
  +
|[[posaconazole]]
  +
|
  +
|20% in inflamed eyes
  +
|[[CiteRef::felton2014ti]]
  +
|-
  +
|[[voriconazole]]
  +
|
  +
|40 to 100%
  +
|[[CiteRef::felton2014ti]]
  +
|-
  +
|
  +
|[[flucytosine]]
  +
|
  +
|40 to 100%
  +
|[[CiteRef::felton2014ti]]
  +
|-
  +
|
  +
|liposomal amphotericin B
  +
|
  +
|only detectable in inflamed eyes
  +
|[[CiteRef::felton2014ti]]
  +
|-
  +
| rowspan="2" |echinocandins
  +
|echinocandins
  +
|
  +
|very low penetration
  +
|[[CiteRef::felton2014ti]]
  +
|-
  +
|[[micafungin]]
  +
|excellent
  +
|undetectable
  +
|[[CiteRef::suzuki2008oc]][[CiteRef::felton2014ti]]
 
|}
 
|}
 
[[Category:Antimicrobials]]
 
[[Category:Antimicrobials]]

Revision as of 21:52, 6 March 2021

Summary

Class Antimicrobial Blood CNS Vitreous Urine Prostate Necrotic
Antibiotics: Ξ²-Lactams
Penicillins Ξ²-lactamase inhibitors –
ampicillin + –
piperacillin-tazobactam +†
Cephalosporins first-generation cephalosporins – –
second-generation cephalosporins –
third-generation cephalosporins +†
cefepime +
ceftazidime + +
Cephamycins cephamycins –
cefoxitin –
Carbapenems imipenem +
Antibiotics: Non-Ξ²-Lactams
Aminoglycosides –
Chloramphenicol chloramphenicol +
Fluoroquinolones –? + +
Fosfomycin fosfomycin +
Lincosamides clindamycin – +
Lipopeptides daptomycin + – +
Macrolides macrolides – +
Nitrofurans nitrofurantoin – – + – –
Nitroimidazoles metronidazole +
Rifamycins rifampin +
Sulfonamides trimethoprim-sulfamethoxazole +
Tetracyclines tetracyclines – +
doxycycline + +
Antivirals
acyclovir / valacyclovir +
ganciclovir +
foscarnet
Antifungals
Azoles fluconazole +
Echinocandins + –
Class Antimicrobial Blood CNS Urine Prostate Necrotic
  • † if inflammation present

Specific Tissues

Prostate

  • Poorly penetrated by most antibiotics
  • Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
  • Fluoroquinolones are the mainstay of therapy, though there is increasing resistance
  • TMP-SMX often used, though conflicting data about its penetration into the prostate
  • Minocycline, doxycycline, and macrolides achieve high levels in the prostate but are rarely indicated for the causative organisms
  • Third-generation cephalosporins and carbapenems can be used
  • Piperacillin, aztreonam, imipenem, and some aminoglycosides are likely useful

Bone

  • Essentially all antibiotics achieve similar bone-to-serum levels, with the exception of oral Ξ²-lactams which nevertheless have no worse outcomes1

Eye

Class Antimicrobial Retinal Penetration Vitreal Penetration Ref
Antibiotics
penicillins ampicillin below MIC in non-inflamed rabbit eyes 2
amoxicillin 2% (below MIC) in non-inflamed rabbit eyes 2
piperacillin undetectable in inflamed human eyes 2
cephalosporins cefazolin above MIC in inflamed rabbit eyes 2
ceftriaxone 4% in non-inflamed human eyes 2
ceftazidime 30% in inflamed rabbit eyes 2
cefipime 8% in non-inflamed human eyes 2
carbapenems imipenem 8 to 10% in non-inflamed human eyes 2
meropenem 30% in non-inflamed human eyes 2
oxazolidinones linezolid 30 to 80% in non-inflamed human eyes 2
vancomycin above MIC in inflamed rabbit eyes 2
daptomycin 30% in inflamed human eyes 2
aminoglycosides amikacin below MIC in inflamed rabbit eyes 2
gentamicin below MIC in inflamed rabbit eyes 2
fluoroquinolones ciprofloxacin below MIC in non-inflamed human eyes 2
levofloxacin 30% but below MIC in non-inflamed human eyes 2
moxifloxacin 10 to 40% and above MIC in non-inflamed human eyes 2
Antifungals
azoles fluconazole 40 to 50% 40 to 50% 34
itraconazole 10% in inflamed eyes 4
posaconazole 20% in inflamed eyes 4
voriconazole 40 to 100% 4
flucytosine 40 to 100% 4
liposomal amphotericin B only detectable in inflamed eyes 4
echinocandins echinocandins very low penetration 4
micafungin excellent undetectable 34

References

  1. ^  Cornelia B. Landersdorfer, JΓΌrgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz SΓΆrgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
  2. a b c d e f g h i j k l m n o p q r  L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
  3. a b  Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
  4. a b c d e f g h  T. Felton, P. F. Troke, W. W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.