Tissue penetration of antimicrobials: Difference between revisions
From IDWiki
(ββ) |
(ββ) |
||
Line 312: | Line 312: | ||
!Class |
!Class |
||
!Antimicrobial |
!Antimicrobial |
||
!Retinal Penetration |
|||
!Vitreal Penetration |
!Vitreal Penetration |
||
!Ref |
|||
|- |
|||
! colspan="5" |Antibiotics |
|||
|- |
|- |
||
| rowspan="3" |penicillins |
| rowspan="3" |penicillins |
||
|[[ampicillin]] |
|[[ampicillin]] |
||
| |
|||
|below MIC in non-inflamed rabbit eyes |
|below MIC in non-inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[amoxicillin]] |
|[[amoxicillin]] |
||
| |
|||
|2% (below MIC) in non-inflamed rabbit eyes |
|2% (below MIC) in non-inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[piperacillin]] |
|[[piperacillin]] |
||
| |
|||
|undetectable in inflamed human eyes |
|undetectable in inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
| rowspan="4" |cephalosporins |
| rowspan="4" |cephalosporins |
||
|[[cefazolin]] |
|[[cefazolin]] |
||
| |
|||
|above MIC in inflamed rabbit eyes |
|above MIC in inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[ceftriaxone]] |
|[[ceftriaxone]] |
||
| |
|||
|4% in non-inflamed human eyes |
|4% in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[ceftazidime]] |
|[[ceftazidime]] |
||
| |
|||
|30% in inflamed rabbit eyes |
|30% in inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[cefipime]] |
|[[cefipime]] |
||
| |
|||
|8% in non-inflamed human eyes |
|8% in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
| rowspan="2" |carbapenems |
| rowspan="2" |carbapenems |
||
|[[imipenem]] |
|[[imipenem]] |
||
| |
|||
|8 to 10% in non-inflamed human eyes |
|8 to 10% in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[meropenem]] |
|[[meropenem]] |
||
| |
|||
|30% in non-inflamed human eyes |
|30% in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|oxazolidinones |
|oxazolidinones |
||
|[[linezolid]] |
|[[linezolid]] |
||
| |
|||
|30 to 80% in non-inflamed human eyes |
|30 to 80% in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
| |
| |
||
|[[vancomycin]] |
|[[vancomycin]] |
||
| |
|||
|above MIC in inflamed rabbit eyes |
|above MIC in inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
| |
| |
||
|[[daptomycin]] |
|[[daptomycin]] |
||
| |
|||
|30% in inflamed human eyes |
|30% in inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
| rowspan="2" |aminoglycosides |
| rowspan="2" |aminoglycosides |
||
|[[amikacin]] |
|[[amikacin]] |
||
| |
|||
|below MIC in inflamed rabbit eyes |
|below MIC in inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[gentamicin]] |
|[[gentamicin]] |
||
| |
|||
|below MIC in inflamed rabbit eyes |
|below MIC in inflamed rabbit eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
| rowspan="3" |fluoroquinolones |
| rowspan="3" |fluoroquinolones |
||
|[[ciprofloxacin]] |
|[[ciprofloxacin]] |
||
| |
|||
|below MIC in non-inflamed human eyes |
|below MIC in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[levofloxacin]] |
|[[levofloxacin]] |
||
| |
|||
|30% but below MIC in non-inflamed human eyes |
|30% but below MIC in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|- |
||
|[[moxifloxacin]] |
|[[moxifloxacin]] |
||
| |
|||
|10 to 40% and above MIC in non-inflamed human eyes |
|10 to 40% and above MIC in non-inflamed human eyes |
||
|[[CiteRef::brockhaus2019re]] |
|||
|- |
|||
! colspan="5" |Antifungals |
|||
|- |
|||
| rowspan="4" |azoles |
|||
|[[fluconazole]] |
|||
|40 to 50% |
|||
|40 to 50% |
|||
|[[CiteRef::suzuki2008oc]][[CiteRef::felton2014ti]] |
|||
|- |
|||
|[[itraconazole]] |
|||
| |
|||
|10% in inflamed eyes |
|||
|[[CiteRef::felton2014ti]] |
|||
|- |
|||
|[[posaconazole]] |
|||
| |
|||
|20% in inflamed eyes |
|||
|[[CiteRef::felton2014ti]] |
|||
|- |
|||
|[[voriconazole]] |
|||
| |
|||
|40 to 100% |
|||
|[[CiteRef::felton2014ti]] |
|||
|- |
|||
| |
|||
|[[flucytosine]] |
|||
| |
|||
|40 to 100% |
|||
|[[CiteRef::felton2014ti]] |
|||
|- |
|||
| |
|||
|liposomal amphotericin B |
|||
| |
|||
|only detectable in inflamed eyes |
|||
|[[CiteRef::felton2014ti]] |
|||
|- |
|||
| rowspan="2" |echinocandins |
|||
|echinocandins |
|||
| |
|||
|very low penetration |
|||
|[[CiteRef::felton2014ti]] |
|||
|- |
|||
|[[micafungin]] |
|||
|excellent |
|||
|undetectable |
|||
|[[CiteRef::suzuki2008oc]][[CiteRef::felton2014ti]] |
|||
|} |
|} |
||
[[Category:Antimicrobials]] |
[[Category:Antimicrobials]] |
Revision as of 01:52, 7 March 2021
Summary
Class | Antimicrobial | Blood | CNS | Vitreous | Urine | Prostate | Necrotic |
---|---|---|---|---|---|---|---|
Antibiotics: Ξ²-Lactams | |||||||
Penicillins | Ξ²-lactamase inhibitors | β | |||||
ampicillin | + | β | |||||
piperacillin-tazobactam | +β | ||||||
Cephalosporins | first-generation cephalosporins | β | β | ||||
second-generation cephalosporins | β | ||||||
third-generation cephalosporins | +β | ||||||
cefepime | + | ||||||
ceftazidime | + | + | |||||
Cephamycins | cephamycins | β | |||||
cefoxitin | β | ||||||
Carbapenems | imipenem | + | |||||
Antibiotics: Non-Ξ²-Lactams | |||||||
Aminoglycosides | β | ||||||
Chloramphenicol | chloramphenicol | + | |||||
Fluoroquinolones | β? | + | + | ||||
Fosfomycin | fosfomycin | + | |||||
Lincosamides | clindamycin | β | + | ||||
Lipopeptides | daptomycin | + | β | + | |||
Macrolides | macrolides | β | + | ||||
Nitrofurans | nitrofurantoin | β | β | + | β | β | |
Nitroimidazoles | metronidazole | + | |||||
Rifamycins | rifampin | + | |||||
Sulfonamides | trimethoprim-sulfamethoxazole | + | |||||
Tetracyclines | tetracyclines | β | + | ||||
doxycycline | + | + | |||||
Antivirals | |||||||
acyclovir / valacyclovir | + | ||||||
ganciclovir | + | ||||||
foscarnet | |||||||
Antifungals | |||||||
Azoles | fluconazole | + | |||||
Echinocandins | + | β | |||||
Class | Antimicrobial | Blood | CNS | Urine | Prostate | Necrotic |
- β if inflammation present
Specific Tissues
Prostate
- Poorly penetrated by most antibiotics
- Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
- Fluoroquinolones are the mainstay of therapy, though there is increasing resistance
- TMP-SMX often used, though conflicting data about its penetration into the prostate
- Minocycline, doxycycline, and macrolides achieve high levels in the prostate but are rarely indicated for the causative organisms
- Third-generation cephalosporins and carbapenems can be used
- Piperacillin, aztreonam, imipenem, and some aminoglycosides are likely useful
Bone
- Essentially all antibiotics achieve similar bone-to-serum levels, with the exception of oral Ξ²-lactams which nevertheless have no worse outcomes1
Eye
- Ocular compartments include anterior and posterior
- Anterior includes aqeous humour, and is best accessed using topical medications
- Posterior includes vitreous humour, retina, and choroid, and is best accessed using intravitreal or systemic medications
- Penetration of systemic antimicrobials into retina and vitreous is poor (~0 to 2%), but is better with inflammation2
- Preferred agents for vitreal penetration include meropenem, linezolid, and moxifloxacin
- Agents that are likely effective, especially when inflammation is present, include vancomycin, cefazolin, ceftriaxone, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole, and possible daptomycin and rifampin
- Agents that do not reach adequate levels include ciprofloxacin, levofloxacin, aminoglycosides, aminopenicillins, piperacillin, cefepime, and clarithromycin
Class | Antimicrobial | Retinal Penetration | Vitreal Penetration | Ref |
---|---|---|---|---|
Antibiotics | ||||
penicillins | ampicillin | below MIC in non-inflamed rabbit eyes | 2 | |
amoxicillin | 2% (below MIC) in non-inflamed rabbit eyes | 2 | ||
piperacillin | undetectable in inflamed human eyes | 2 | ||
cephalosporins | cefazolin | above MIC in inflamed rabbit eyes | 2 | |
ceftriaxone | 4% in non-inflamed human eyes | 2 | ||
ceftazidime | 30% in inflamed rabbit eyes | 2 | ||
cefipime | 8% in non-inflamed human eyes | 2 | ||
carbapenems | imipenem | 8 to 10% in non-inflamed human eyes | 2 | |
meropenem | 30% in non-inflamed human eyes | 2 | ||
oxazolidinones | linezolid | 30 to 80% in non-inflamed human eyes | 2 | |
vancomycin | above MIC in inflamed rabbit eyes | 2 | ||
daptomycin | 30% in inflamed human eyes | 2 | ||
aminoglycosides | amikacin | below MIC in inflamed rabbit eyes | 2 | |
gentamicin | below MIC in inflamed rabbit eyes | 2 | ||
fluoroquinolones | ciprofloxacin | below MIC in non-inflamed human eyes | 2 | |
levofloxacin | 30% but below MIC in non-inflamed human eyes | 2 | ||
moxifloxacin | 10 to 40% and above MIC in non-inflamed human eyes | 2 | ||
Antifungals | ||||
azoles | fluconazole | 40 to 50% | 40 to 50% | 34 |
itraconazole | 10% in inflamed eyes | 4 | ||
posaconazole | 20% in inflamed eyes | 4 | ||
voriconazole | 40 to 100% | 4 | ||
flucytosine | 40 to 100% | 4 | ||
liposomal amphotericin B | only detectable in inflamed eyes | 4 | ||
echinocandins | echinocandins | very low penetration | 4 | |
micafungin | excellent | undetectable | 34 |
References
- ^ Cornelia B. Landersdorfer, JΓΌrgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz SΓΆrgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
- a b c d e f g h i j k l m n o p q r L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
- a b Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
- a b c d e f g h Timothy Felton, Peter F. Troke, William W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.