Tissue penetration of antimicrobials: Difference between revisions

From IDWiki
Line 11: Line 11:
! colspan="7" |Antibiotics: Ξ²-Lactams
! colspan="7" |Antibiotics: Ξ²-Lactams
|-
|-
| rowspan="3" |Penicillins
| rowspan="3" |[[Penicillins]]
|Ξ²-lactamase inhibitors
|Ξ²-lactamase inhibitors
|
|
Line 33: Line 33:
|
|
|-
|-
| rowspan="5" |Cephalosporins
| rowspan="5" |[[Cephalosporins]]
|first-generation cephalosporins
|first-generation cephalosporins
|
|
Line 69: Line 69:
| style="text-align:center" | +
| style="text-align:center" | +
|-
|-
| rowspan="2" |Cephamycins
| rowspan="2" |[[Cephamycins]]
|[[cephamycins]]
|[[cephamycins]]
|
|
Line 84: Line 84:
| style="text-align:center" |–
| style="text-align:center" |–
|-
|-
|Carbapenems
|[[Carbapenems]]
|[[imipenem]]
|[[imipenem]]
|
|
Line 94: Line 94:
! colspan="7" |Antibiotics: Non-Ξ²-Lactams
! colspan="7" |Antibiotics: Non-Ξ²-Lactams
|-
|-
|Aminoglycosides
|[[Aminoglycosides]]
|
|
|
|
Line 102: Line 102:
| style="text-align:center" |–
| style="text-align:center" |–
|-
|-
|Chloramphenicol
|[[Chloramphenicol]]
|[[chloramphenicol]]
|[[chloramphenicol]]
|
|
Line 110: Line 110:
| style="text-align:center" | +
| style="text-align:center" | +
|-
|-
|Fluoroquinolones
|[[Fluoroquinolones]]
|
|
|
|
Line 118: Line 118:
| style="text-align:center" | +
| style="text-align:center" | +
|-
|-
|Fosfomycin
|[[Fosfomycin]]
|[[fosfomycin]]
|[[fosfomycin]]
|
|
Line 126: Line 126:
|
|
|-
|-
|Lincosamides
|[[Lincosamides]]
|[[clindamycin]]
|[[clindamycin]]
|
|
Line 134: Line 134:
| style="text-align:center" | +
| style="text-align:center" | +
|-
|-
|Macrolides
|[[Macrolides]]
|[[macrolides]]
|[[macrolides]]
|
|
Line 142: Line 142:
|
|
|-
|-
|Nitrofurans
|[[Nitrofurans]]
|[[nitrofurantoin]]
|[[nitrofurantoin]]
| style="text-align:center" |–
| style="text-align:center" |–
Line 150: Line 150:
| style="text-align:center" |–
| style="text-align:center" |–
|-
|-
|Nitroimidazoles
|[[Nitroimidazoles]]
|[[metronidazole]]
|[[metronidazole]]
|
|
Line 158: Line 158:
| style="text-align:center" | +
| style="text-align:center" | +
|-
|-
|Rifamycins
|[[Rifamycins]]
|[[rifampin]]
|[[rifampin]]
|
|
Line 166: Line 166:
|
|
|-
|-
|Sulfonamides
|[[Sulfonamides]]
|[[trimethoprim-sulfamethoxazole]]
|[[trimethoprim-sulfamethoxazole]]
|
|
Line 174: Line 174:
|
|
|-
|-
| rowspan="2" |Tetracyclines
| rowspan="2" |[[Tetracyclines]]
|[[tetracyclines]]
|[[tetracyclines]]
|
|
Line 191: Line 191:
! colspan="7" |Antifungals
! colspan="7" |Antifungals
|-
|-
|Azoles
|[[Azoles]]
|[[fluconazole]]
|[[fluconazole]]
|
|
Line 198: Line 198:
|
|
| style="text-align:center" | +
| style="text-align:center" | +
|-
|[[Echinocandins]]
|
| +
|
|–
|
|
|-
|-
!Class
!Class

Revision as of 18:46, 16 September 2020

Summary

Class Antimicrobial Blood CNS Urine Prostate Necrotic
Antibiotics: Ξ²-Lactams
Penicillins Ξ²-lactamase inhibitors –
ampicillin + –
piperacillin-tazobactam +†
Cephalosporins first-generation cephalosporins – –
second-generation cephalosporins –
third-generation cephalosporins +†
cefepime +
ceftazidime + +
Cephamycins cephamycins –
cefoxitin –
Carbapenems imipenem +
Antibiotics: Non-Ξ²-Lactams
Aminoglycosides –
Chloramphenicol chloramphenicol +
Fluoroquinolones –? + +
Fosfomycin fosfomycin +
Lincosamides clindamycin – +
Macrolides macrolides – +
Nitrofurans nitrofurantoin – – + – –
Nitroimidazoles metronidazole +
Rifamycins rifampin +
Sulfonamides trimethoprim-sulfamethoxazole +
Tetracyclines tetracyclines – +
doxycycline + +
Antifungals
Azoles fluconazole +
Echinocandins + –
Class Antimicrobial Blood CNS Urine Prostate Necrotic
  • † if inflammation present

Prostate

  • Poorly penetrated by most antibiotics
  • Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
  • Fluoroquinolones are the mainstay of therapy, though there is increasing resistance
  • TMP-SMX often used, though conflicting data about its penetration into the prostate
  • Minocycline, doxycycline, and macrolides achieve high levels in the prostate but are rarely indicated for the causative organisms
  • Third-generation cephalosporins and carbapenems can be used
  • Piperacillin, aztreonam, imipenem, and some aminoglycosides are likely useful

References

  1. ^  Tomasz Jodlowski, Charles R Ashby, Sarath G Nath. Doxycycline for ESBL-E Cystitis. Clinical Infectious Diseases. 2020. doi:10.1093/cid/ciaa1898.
  2. a b c d e f g h i  Timothy Felton, Peter F. Troke, William W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.
  3. ^ nau2010pe 
  4. ^  Cornelia B. Landersdorfer, JΓΌrgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz SΓΆrgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
  5. a b c d e f g h i j k l m n o p q r  L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
  6. a b  Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
  7. ^  Tony H. Huynh, Mark W. Johnson, Grant M. Comer, Douglas N. Fish. Vitreous Penetration of Orally Administered Valacyclovir. American Journal of Ophthalmology. 2008;145(4):682-686. doi:10.1016/j.ajo.2007.11.016.
  8. ^  Luis F. LΓ³pez-CortΓ©s, R. Ruiz-Valderas, M. J. Lucero-MuΓ±oz, E. Cordero, M. T. Pastor-Ramos, J. Marquez. Intravitreal, Retinal, and Central Nervous System Foscarnet Concentrations after Rapid Intravenous Administration to Rabbits. Antimicrobial Agents and Chemotherapy. 2000;44(3):756-759. doi:10.1128/aac.44.3.756-759.2000.