Tissue penetration of antimicrobials: Difference between revisions

From IDWiki
No edit summary
No edit summary
Line 1: Line 1:
  +
== Summary ==
 
{| class="wikitable"
 
{| class="wikitable"
 
!Class
 
!Class
Line 208: Line 209:
   
 
*† if inflammation present
 
*† if inflammation present
  +
  +
== Prostate ==
  +
  +
* Poorly penetrated by most antibiotics
  +
* Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
  +
* [[Fluoroquinolones]] are the mainstay of therapy, though there is increasing resistance
  +
* [[TMP-SMX]] often used, but unclear if the [[sulfamethoxazole]] component actually reaches the prostate
  +
* [[Minocycline]], [[doxycycline]], and [[macrolides]] achieve high levels in the prostate but are rarely indicated for the causative organisms
  +
* Third-generation [[cephalosporins]] and [[carbapenems]] can be used
  +
* [[Piperacillin]], [[aztreonam]], [[imipenem]], and some [[aminoglycosides]] are likely useful
   
 
[[Category:Antimicrobials]]
 
[[Category:Antimicrobials]]

Revision as of 14:32, 14 September 2020

Summary

Class Antimicrobial Blood CNS Urine Prostate Necrotic
Antibiotics: β-Lactams
Penicillins β-lactamase inhibitors
ampicillin +
piperacillin-tazobactam +†
Cephalosporins first-generation cephalosporins
second-generation cephalosporins
third-generation cephalosporins +†
cefepime +
ceftazidime + +
Cephamycins cephamycins
cefoxitin
Carbapenems imipenem +
Antibiotics: Non-β-Lactams
Aminoglycosides
Chloramphenicol chloramphenicol +
Fluoroquinolones –? + +
Fosfomycin fosfomycin +
Lincosamides clindamycin +
Macrolides macrolides +
Nitrofurans nitrofurantoin +
Nitroimidazoles metronidazole +
Rifamycins rifampin +
Sulfonamides trimethoprim-sulfamethoxazole +
Tetracyclines tetracyclines +
doxycycline + +
Antifungals
Azoles fluconazole +
Class Antimicrobial Blood CNS Urine Prostate Necrotic
  • † if inflammation present

Prostate

References

  1. ^  Cornelia B. Landersdorfer, Jürgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz Sörgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
  2. a b c d e f g h i j k l m n o p q r  L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
  3. a b  Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
  4. a b c d e f g h  Timothy Felton, Peter F. Troke, William W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.
  5. ^  Tony H. Huynh, Mark W. Johnson, Grant M. Comer, Douglas N. Fish. Vitreous Penetration of Orally Administered Valacyclovir. American Journal of Ophthalmology. 2008;145(4):682-686. doi:10.1016/j.ajo.2007.11.016.
  6. ^  Luis F. López-Cortés, R. Ruiz-Valderas, M. J. Lucero-Muñoz, E. Cordero, M. T. Pastor-Ramos, J. Marquez. Intravitreal, Retinal, and Central Nervous System Foscarnet Concentrations after Rapid Intravenous Administration to Rabbits. Antimicrobial Agents and Chemotherapy. 2000;44(3):756-759. doi:10.1128/aac.44.3.756-759.2000.