Tissue penetration of antimicrobials: Difference between revisions
From IDWiki
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
+ | == Summary == |
||
{| class="wikitable" |
{| class="wikitable" |
||
!Class |
!Class |
||
Line 208: | Line 209: | ||
*† if inflammation present |
*† if inflammation present |
||
+ | |||
+ | == Prostate == |
||
+ | |||
+ | * Poorly penetrated by most antibiotics |
||
+ | * Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size |
||
+ | * [[Fluoroquinolones]] are the mainstay of therapy, though there is increasing resistance |
||
+ | * [[TMP-SMX]] often used, but unclear if the [[sulfamethoxazole]] component actually reaches the prostate |
||
+ | * [[Minocycline]], [[doxycycline]], and [[macrolides]] achieve high levels in the prostate but are rarely indicated for the causative organisms |
||
+ | * Third-generation [[cephalosporins]] and [[carbapenems]] can be used |
||
+ | * [[Piperacillin]], [[aztreonam]], [[imipenem]], and some [[aminoglycosides]] are likely useful |
||
[[Category:Antimicrobials]] |
[[Category:Antimicrobials]] |
Revision as of 14:32, 14 September 2020
Summary
Class | Antimicrobial | Blood | CNS | Urine | Prostate | Necrotic |
---|---|---|---|---|---|---|
Antibiotics: β-Lactams | ||||||
Penicillins | β-lactamase inhibitors | – | ||||
ampicillin | + | – | ||||
piperacillin-tazobactam | +† | |||||
Cephalosporins | first-generation cephalosporins | – | – | |||
second-generation cephalosporins | – | |||||
third-generation cephalosporins | +† | |||||
cefepime | + | |||||
ceftazidime | + | + | ||||
Cephamycins | cephamycins | – | ||||
cefoxitin | – | |||||
Carbapenems | imipenem | + | ||||
Antibiotics: Non-β-Lactams | ||||||
Aminoglycosides | – | |||||
Chloramphenicol | chloramphenicol | + | ||||
Fluoroquinolones | –? | + | + | |||
Fosfomycin | fosfomycin | + | ||||
Lincosamides | clindamycin | – | + | |||
Macrolides | macrolides | – | + | |||
Nitrofurans | nitrofurantoin | – | – | + | – | – |
Nitroimidazoles | metronidazole | + | ||||
Rifamycins | rifampin | + | ||||
Sulfonamides | trimethoprim-sulfamethoxazole | + | ||||
Tetracyclines | tetracyclines | – | + | |||
doxycycline | + | + | ||||
Antifungals | ||||||
Azoles | fluconazole | + | ||||
Class | Antimicrobial | Blood | CNS | Urine | Prostate | Necrotic |
- † if inflammation present
Prostate
- Poorly penetrated by most antibiotics
- Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
- Fluoroquinolones are the mainstay of therapy, though there is increasing resistance
- TMP-SMX often used, but unclear if the sulfamethoxazole component actually reaches the prostate
- Minocycline, doxycycline, and macrolides achieve high levels in the prostate but are rarely indicated for the causative organisms
- Third-generation cephalosporins and carbapenems can be used
- Piperacillin, aztreonam, imipenem, and some aminoglycosides are likely useful
References
- ^ Cornelia B. Landersdorfer, Jürgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz Sörgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
- a b c d e f g h i j k l m n o p q r L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
- a b Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
- a b c d e f g h Timothy Felton, Peter F. Troke, William W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.
- ^ Tony H. Huynh, Mark W. Johnson, Grant M. Comer, Douglas N. Fish. Vitreous Penetration of Orally Administered Valacyclovir. American Journal of Ophthalmology. 2008;145(4):682-686. doi:10.1016/j.ajo.2007.11.016.
- ^ Luis F. López-Cortés, R. Ruiz-Valderas, M. J. Lucero-Muñoz, E. Cordero, M. T. Pastor-Ramos, J. Marquez. Intravitreal, Retinal, and Central Nervous System Foscarnet Concentrations after Rapid Intravenous Administration to Rabbits. Antimicrobial Agents and Chemotherapy. 2000;44(3):756-759. doi:10.1128/aac.44.3.756-759.2000.