Tissue penetration of antimicrobials: Difference between revisions

From IDWiki
No edit summary
No edit summary
Line 116: Line 116:
 
| style="text-align:center" | +
 
| style="text-align:center" | +
 
| style="text-align:center" | +
 
| style="text-align:center" | +
  +
|-
  +
|Fosfomycin
  +
|[[fosfomycin]]
  +
|
  +
|
  +
|
  +
| +
  +
|
 
|-
 
|-
 
|Lincosamides
 
|Lincosamides
Line 158: Line 166:
 
|-
 
|-
 
|Sulfonamides
 
|Sulfonamides
|[[sulfamethoxazole]]
+
|[[trimethoprim-sulfamethoxazole]]
 
|
 
|
 
|
 
|
 
|
 
|
| style="text-align:center" |
+
| style="text-align:center" | +
 
|
 
|
 
|-
 
|-
Line 177: Line 185:
 
|
 
|
 
|
 
|
|
+
| +
 
| style="text-align:center" | +
 
| style="text-align:center" | +
 
|-
 
|-
Line 189: Line 197:
 
|
 
|
 
| style="text-align:center" | +
 
| style="text-align:center" | +
  +
|-
  +
!Class
  +
!Antimicrobial
  +
!Blood
  +
!CNS
  +
!Urine
  +
!Prostate
  +
!Necrotic
 
|}
 
|}
   
* † if inflammation present
+
*† if inflammation present
   
 
[[Category:Antimicrobials]]
 
[[Category:Antimicrobials]]

Revision as of 11:03, 8 September 2020

Class Antimicrobial Blood CNS Urine Prostate Necrotic
Antibiotics: β-Lactams
Penicillins β-lactamase inhibitors
ampicillin +
piperacillin-tazobactam +†
Cephalosporins first-generation cephalosporins
second-generation cephalosporins
third-generation cephalosporins +†
cefepime +
ceftazidime + +
Cephamycins cephamycins
cefoxitin
Carbapenems imipenem +
Antibiotics: Non-β-Lactams
Aminoglycosides
Chloramphenicol chloramphenicol +
Fluoroquinolones –? + +
Fosfomycin fosfomycin +
Lincosamides clindamycin +
Macrolides macrolides +
Nitrofurans nitrofurantoin +
Nitroimidazoles metronidazole +
Rifamycins rifampin +
Sulfonamides trimethoprim-sulfamethoxazole +
Tetracyclines tetracyclines +
doxycycline + +
Antifungals
Azoles fluconazole +
Class Antimicrobial Blood CNS Urine Prostate Necrotic
  • † if inflammation present

References

  1. ^ nau2010pe 
  2. ^  Cornelia B. Landersdorfer, Jürgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz Sörgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
  3. a b c d e f g h i j k l m n o p q r  L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
  4. a b  Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
  5. a b c d e f g h  T. Felton, P. F. Troke, W. W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.
  6. ^  Tony H. Huynh, Mark W. Johnson, Grant M. Comer, Douglas N. Fish. Vitreous Penetration of Orally Administered Valacyclovir. American Journal of Ophthalmology. 2008;145(4):682-686. doi:10.1016/j.ajo.2007.11.016.
  7. ^  Luis F. López-Cortés, R. Ruiz-Valderas, M. J. Lucero-Muñoz, E. Cordero, M. T. Pastor-Ramos, J. Marquez. Intravitreal, Retinal, and Central Nervous System Foscarnet Concentrations after Rapid Intravenous Administration to Rabbits. Antimicrobial Agents and Chemotherapy. 2000;44(3):756-759. doi:10.1128/aac.44.3.756-759.2000.