Tissue penetration of antimicrobials: Difference between revisions

From IDWiki
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 141: Line 141:
 
|-
 
|-
 
| rowspan="2" |[[Fluoroquinolones]]
 
| rowspan="2" |[[Fluoroquinolones]]
  +
|all
| style="text-align:center" |all
 
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |–?
 
| style="text-align:center" |–?
Line 251: Line 251:
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
  +
| style="text-align:center" |±<ref>Tomasz Jodlowski, Charles R Ashby, Sarath G Nath, Doxycycline for ESBL-E Cystitis, ''Clinical Infectious Diseases'', Volume 73, Issue 1, 1 July 2021, Pages e274–e275, https://doi.org/10.1093/cid/ciaa1898</ref>
| style="text-align:center" |–
 
 
| style="text-align:center" | +
 
| style="text-align:center" | +
 
| style="text-align:center" | +
 
| style="text-align:center" | +
Line 284: Line 284:
 
| style="text-align:center" |
 
| style="text-align:center" |
 
|-
 
|-
  +
! colspan="8" |Antifungals<ref>Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014 Jan;27(1):68-88. doi: 10.1128/CMR.00046-13. PMID: 24396137; PMCID: [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910906/ PMC3910906].</ref>
! colspan="8" |Antifungals
 
 
|-
 
|-
|[[Azoles]]
+
| rowspan="3" |[[Azoles]]
 
|[[fluconazole]]
 
|[[fluconazole]]
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" | +
 
| style="text-align:center" | +
  +
| style="text-align:center" | +
  +
| style="text-align:center" |±
  +
| style="text-align:center" | +
  +
|-
  +
|[[itraconazole]]
 
| style="text-align:center" |
 
| style="text-align:center" |
  +
| style="text-align:center" |±
 
| style="text-align:center" |–
 
| style="text-align:center" | +
 
| style="text-align:center" | +
  +
| style="text-align:center" |–
  +
| style="text-align:center" |
  +
|-
  +
|[[voriconazole]]
  +
| style="text-align:center" |
  +
| style="text-align:center" |±
  +
| style="text-align:center" |±
  +
| style="text-align:center" |±
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
| style="text-align:center" | +
 
 
|-
 
|-
|[[Echinocandins]]
+
| rowspan="3" |[[Echinocandins]]
  +
|[[anidulafungin]]
  +
| style="text-align:center" | +
  +
| style="text-align:center" |±
  +
| style="text-align:center" |–
  +
| style="text-align:center" |±
 
| style="text-align:center" |
 
| style="text-align:center" |
  +
| style="text-align:center" |
  +
|-
  +
|[[caspofungin]]
 
| style="text-align:center" | +
 
| style="text-align:center" | +
  +
| style="text-align:center" |–
  +
| style="text-align:center" |–
  +
| style="text-align:center" |±
 
| style="text-align:center" |
 
| style="text-align:center" |
  +
| style="text-align:center" |
  +
|-
  +
|[[micafungin]]
  +
| style="text-align:center" |
  +
| style="text-align:center" |±
 
| style="text-align:center" |–
 
| style="text-align:center" |–
  +
| style="text-align:center" |±
  +
| style="text-align:center" |
  +
| style="text-align:center" |
  +
|-
 
| rowspan="2" |[[Polyenes]]
  +
|deoxycholate [[amphotericin B]]
  +
| style="text-align:center" |
  +
| style="text-align:center" |
 
| style="text-align:center" |–
 
| style="text-align:center" |–
  +
| style="text-align:center" | +
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
 
|-
 
|-
|[[Polyenes]]
 
 
|liposomal [[amphotericin B]]
 
|liposomal [[amphotericin B]]
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |–
 
| style="text-align:center" |–
 
| style="text-align:center" |±†
 
| style="text-align:center" |±†
| style="text-align:center" |
+
| style="text-align:center" | +
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |
 
| style="text-align:center" |

Latest revision as of 10:55, 1 November 2023

Summary

Class Antimicrobial Blood CNS Vitreous Urine Prostate Necrotic
Antibiotics: β-Lactams
Penicillins β-lactamase inhibitors
ampicillin + ±
piperacillin-tazobactam +†
Cephalosporins first-generation cephalosporins
second-generation cephalosporins
third-generation cephalosporins ± +†
ceftriaxone +
cefepime +
ceftazidime + ± +
Cephamycins cephamycins
cefoxitin
Carbapenems imipenem +
meropenem + + +
Antibiotics: Non-β-Lactams
Aminoglycosides
Chloramphenicol chloramphenicol +
Fluoroquinolones all –? + +
moxifloxacin
Fosfomycin fosfomycin +
Lincosamides clindamycin +
Lipopeptides daptomycin + +
Macrolides macrolides +
Nitrofurans nitrofurantoin +
Nitroimidazoles metronidazole +
Oxazolidinones linezolid + + + ±‡
Rifamycins rifampin +
Sulfonamides trimethoprim-sulfamethoxazole +
Tetracyclines tetracyclines +
doxycycline ±[1] + +
Antivirals
acyclovir / valacyclovir +
ganciclovir +
foscarnet
Antifungals[2]
Azoles fluconazole + + + ± +
itraconazole ± +
voriconazole ± ± ±
Echinocandins anidulafungin + ± ±
caspofungin + ±
micafungin ± ±
Polyenes deoxycholate amphotericin B +
liposomal amphotericin B ±† +
Class Antimicrobial Blood CNS Vitreous Urine Prostate Necrotic
  • † if inflammation present
  • ‡ very low levels, but likely enough for Enterococcus

Specific Tissues

Central Nervous System

  • Reviewed in 1
Class Antimicrobial CSF Penetration (AUC) With Meningeal Inflammation
Antibiotics
penicillins overall 2% 2%
ampicillin
amoxicillin 6%
cloxacillin 0.87%
piperacillin 3% 32%
beta lactamase inhibitors overall 7% 10%
clavulanate 4% 8%
tazobactam 11%
cephalosporins overall 0.7 to 10% 15%
cefotaxime 12% 4 to 17%
ceftriaxone 0.7%
ceftazidime 0.6%
carbapenems overall 20% 30%
imipenem 14%
meropenem 5 to 25% 39%
aminoglycosides overall 20%
fluoroquinolones overall 30 to 70% 70 to 90%
ciprofloxacin 24 to 43% 92%
levofloxacin 71%
moxifloxacin 46% 79%
chloramphenicol 60 to 70% 60 to 70%
macrolides clarithromycin 18%
tetracyclines doxycycline 20% 20%
fosfomycin 18%
linezolid 90%
metronidazole 87%
rifamycins rifampin 22%
trimethoprim-sulfamethoxazole trimethoprim 18% 42 to 51%
sulfamethoxazole 12% 24 to 30%
glycopeptides vancomycin 14 to 18% 30%
antituberculosis medications isoniazid 86%
Antivirls
anti-herpes nucleoside analogues acyclovir 31%
valacyclovir 19%
foscarnet 27 to 43% 23 to 66%
HIV antiretrovirals abacavir 35%
zidovudine 75%
indinavir 6 to 15%
lopinavir 29%
Antifungals
flucytosine 74%
azoles fluconazole 86%
voriconazole 46%
polyenes amphotericin B low
Antiparasitics
albendazole 38 to 43%
praziquantel 24%
sulfadiazine 27 to 33%

Prostate

  • Poorly penetrated by most antibiotics
  • Penetration is higher with a high concentration gradient, high lipid solubility, low degree of ionization, high dissociation constant, low protein binding, and small molecular size
  • Fluoroquinolones are the mainstay of therapy, though there is increasing resistance
  • TMP-SMX often used, though conflicting data about its penetration into the prostate
  • Minocycline, doxycycline, and macrolides achieve high levels in the prostate but are rarely indicated for the causative organisms
  • Third-generation cephalosporins and carbapenems can be used
  • Piperacillin, aztreonam, imipenem, and some aminoglycosides are likely useful

Bone

  • Essentially all antibiotics achieve similar bone-to-serum levels, with the exception of oral β-lactams which nevertheless have no worse outcomes2

Eye

Class Antimicrobial Retinal Penetration Vitreal Penetration Ref
Antibiotics
penicillins ampicillin below MIC in non-inflamed rabbit eyes 3
amoxicillin 2% (below MIC) in non-inflamed rabbit eyes 3
piperacillin undetectable in inflamed human eyes 3
cephalosporins cefazolin above MIC in inflamed rabbit eyes 3
ceftriaxone 4% in non-inflamed human eyes 3
ceftazidime 30% in inflamed rabbit eyes 3
cefipime 8% in non-inflamed human eyes 3
carbapenems imipenem 8 to 10% in non-inflamed human eyes 3
meropenem 30% in non-inflamed human eyes 3
oxazolidinones linezolid 30 to 80% in non-inflamed human eyes 3
vancomycin above MIC in inflamed rabbit eyes 3
daptomycin 30% in inflamed human eyes 3
aminoglycosides amikacin below MIC in inflamed rabbit eyes 3
gentamicin below MIC in inflamed rabbit eyes 3
fluoroquinolones ciprofloxacin below MIC in non-inflamed human eyes 3
levofloxacin 30% but below MIC in non-inflamed human eyes 3
moxifloxacin 10 to 40% and above MIC in non-inflamed human eyes 3
Antifungals
azoles fluconazole 40 to 50% 40 to 50% 45
itraconazole 10% in inflamed eyes 5
posaconazole 20% in inflamed eyes 5
voriconazole 40 to 100% 5
flucytosine 40 to 100% 5
polyenes liposomal amphotericin B only detectable in inflamed eyes 5
echinocandins echinocandins very low penetration 5
micafungin excellent undetectable 45
Antivirals
acyclovir above IC
valacyclovir 20 to 30%, above IC in non-inflamed human eyes 6
ganciclovir close to IC
foscarnet 100% 10%, close to IC 7
  1. Tomasz Jodlowski, Charles R Ashby, Sarath G Nath, Doxycycline for ESBL-E Cystitis, Clinical Infectious Diseases, Volume 73, Issue 1, 1 July 2021, Pages e274–e275, https://doi.org/10.1093/cid/ciaa1898
  2. Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014 Jan;27(1):68-88. doi: 10.1128/CMR.00046-13. PMID: 24396137; PMCID: PMC3910906.

References

  1. ^ nau2010pe 
  2. ^  Cornelia B. Landersdorfer, Jürgen B. Bulitta, Martina Kinzig, Ulrike Holzgrabe, Fritz Sörgel. Penetration of Antibacterials into Bone. Clinical Pharmacokinetics. 2009;48(2):89-124. doi:10.2165/00003088-200948020-00002.
  3. a b c d e f g h i j k l m n o p q r  L. Brockhaus, D. Goldblum, L. Eggenschwiler, S. Zimmerli, C. Marzolini. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clinical Microbiology and Infection. 2019;25(11):1364-1369. doi:10.1016/j.cmi.2019.01.017.
  4. a b  Takashi Suzuki, Toshihiko Uno, Guangming Chen, Yuichi Ohashi. Ocular distribution of intravenously administered micafungin in rabbits. Journal of Infection and Chemotherapy. 2008;14(3):204-207. doi:10.1007/s10156-008-0612-5.
  5. a b c d e f g h  T. Felton, P. F. Troke, W. W. Hope. Tissue Penetration of Antifungal Agents. Clinical Microbiology Reviews. 2014;27(1):68-88. doi:10.1128/cmr.00046-13.
  6. ^  Tony H. Huynh, Mark W. Johnson, Grant M. Comer, Douglas N. Fish. Vitreous Penetration of Orally Administered Valacyclovir. American Journal of Ophthalmology. 2008;145(4):682-686. doi:10.1016/j.ajo.2007.11.016.
  7. ^  Luis F. López-Cortés, R. Ruiz-Valderas, M. J. Lucero-Muñoz, E. Cordero, M. T. Pastor-Ramos, J. Marquez. Intravitreal, Retinal, and Central Nervous System Foscarnet Concentrations after Rapid Intravenous Administration to Rabbits. Antimicrobial Agents and Chemotherapy. 2000;44(3):756-759. doi:10.1128/aac.44.3.756-759.2000.