Leptospira: Difference between revisions

From IDWiki
Leptospira
()
()
Line 61: Line 61:


== Diagnosis ==
== Diagnosis ==
* In general, use PCR if early in disease (<7 days) and ELISA IgM followed by confirmatory MAT if further in disease (≥7 days)
{| class="wikitable"
! Method !! Sens !! Spec
|-
| Culture || 5-50% || 100%
|-
| Microscopic agglutination test (MAT) || 90% || >90%
|-
| ELISA IgM || >90% || 88-95%
|-
| Latex agglutination || 92% || 95%
|-
| Lateral flow assay || 81% || 96%
|-
| PCR || 100% || 93%
|}

=== Microscopy ===
=== Microscopy ===
* Leptospires can be seen directly under darkfield microscopy
* Leptospires can be seen directly under darkfield microscopy
Line 67: Line 84:
=== Culture ===
=== Culture ===
* Can get positive cultures from blood and CSF, ideally when collected while febrile and before antibiotics
* Can get positive cultures from blood and CSF, ideally when collected while febrile and before antibiotics
* Can innoculate one to blood drops directly into culture at bedside
* Can inoculate one to blood drops directly into culture at bedside
* Urine can be cultured after the first week of illness, but need to be processed quickly
* Urine can be cultured after the first week of illness, but need to be processed quickly
* Use Fletcher's medium (commercial version)
* Use Fletcher's medium (commercial version)
* Not very sensitive, and cultures can take weeks
* Not very sensitive, and cultures can take weeks

=== PCR ===
* Loop-mediated isothermal amplification (LAMP) assays and other PCR assays exist
* Unclear sensitivity and specificity, but has the potential to diagnose disease before antibodies develop
* Usually done from blood, but can try in urine as well


=== Serology ===
=== Serology ===
* Detects IgM antibodies, which appear around day 5
* Detects IgM antibodies, which appear around day 5 to 7
* Microscopic agglutination test (MAT) for antigen detection (Sn 90%, Sp 90%)
* Microscopic agglutination test (MAT) for antigen detection (Sn 90%, Sp 90%)
** ''Leptospira'' antigens are mixed with serum and monitored for agglutination
** ''Leptospira'' antigens are mixed with serum and monitored for agglutination
** Monitor for a four-fold rise in titres from acute-phase to convalescent phase (repeat 4 to 6 weeks), or a single titre of at least 1:800
** Monitor for a four-fold rise in titres from acute-phase to convalescent phase (repeat 4 to 6 weeks), or a single titre of at least 1:800
** May cross-react with syphilis, relapsing fever, Lyme disease, viral hepatitis, HIV, legionellosis, and autoimmune diseases
** May cross-react with [[syphilis]], [[relapsing fever]], [[Lyme disease]], [[viral hepatitis]], HIV, [[Legionella]], and autoimmune diseases
** Cross-reacts between different serogroups
** Cross-reacts between different serogroups
* IgM ELISA, needs confirmation by MAT (Sn 90%, Sp 90%)
* IgM ELISA, needs confirmation by MAT (Sn 90%, Sp 90%)
* Latex agglutination test, needs confirmation by MAT (Sn 80%, Sp 95%)
* Latex agglutination test, needs confirmation by MAT (Sn 80%, Sp 95%)
* Lateral flow test, needs confirmation by MAT (Sn 80%, Sp 95%)
* Lateral flow test, needs confirmation by MAT (Sn 80%, Sp 95%)

=== PCR ===
* Loop-mediated isothermal amplification (LAMP) assays and other PCR assays exist
* Unclear sensitivity and specificity, but has the potential to diagnose disease before antibodies develop
* Usually done from blood, but can try in urine as well


== Differential Diagnosis ==
== Differential Diagnosis ==

Revision as of 14:49, 6 December 2019

Background

Microbiology

  • Thin, flagellated spirochetes
  • Best viewed with darkfield microscopy
  • Species and serovars are divided into three broad categories within the genus Leptospira
    • Pathogens: L. interrogans (multiple serovars, most common), L. noguchii, L. borgpetersenii, L. santarosai, L. kirschneri, L. weilii, L. alexanderi, L. alstonii, L. meyeri, L. wolffi, and L. kmetyi
    • Non-pathogenic saprophytes: L. biflexa, L. wolbachii, L. vanthielii, L. terpstrae, L. yanagawae, and L. idonii
    • Species of indeterminate pathogenicity: L. inadai, L. fainei, L. broomii, and L. licerasiae
  • Within each species, there may be multiple serovars that are defined based on lipopolysaccharide (LPS) O-antigens
    • A single species may have pathogenic and non-pathogenic serovars

Epidemiology

  • Endemic worldwide
    • More common during rainy seasons in tropical regions and late summer to fall in temperate regions
    • In US, more common in Hawaii
  • Major reservoir is as a chronic kidney infection in animals, especially rodents
    • Among livestock, may cause spontaneous abortions
  • Most common risk factor is exposure to water or soil contaminated with rodent urine
    • Includes occupational exposures and direct contact
    • High-risk occupations include farmers, slaughterhouse workers, pet traders, veterinarians, rodent catchers and sewer workers
  • Leptospires can survive in water or soil for months, depending on the conditions

Pathophysiology

  • Bacteria enter through cuts and abrasions, mucous membranes, conjunctivae, and inhalation
  • After entering, it disseminates hematogenously
  • Human TLR4 cannot bind leptospiral LPS
  • Virulence factors
    • Sphingomyelinase and hemolysin
    • Also spirochete motility
    • Also hooked ends

Clinical Presentation

  • Spectrum of severity, from asymptomatic seroconversion (most common) to nonspecific febrile illness to severe, life-threating multiorgan failure
    • Asymptomatic disease is likely frequent, given high seroprevalence in some populations
  • Incubation period 10 days (range 5 to 14)
  • Acute febrile phase
    • Acute phase lasts 5 to 7 days
    • Starts with high fevers, headaches, chills, rigors, and myalgias
    • Conjunctival injection is an identifying feature
    • Muscle tenderness, especially in the calf and lumbar areas, is also characteristic
    • Can also have lymphadenopathy, splenomegaly, and hepatomegaly
    • Spirochetes in blood and CSF, possibly urine
  • Immune phase
    • Lasts 4 to 30 days
    • IgM antibodies appear
    • Spirochete is cleared from blood and CSF but detectable in other organs, including urine
    • May develop jaundice, renal failure, arrhythmias, pulmonary symptoms, aseptic meningitis, conjunctival injection, photophobia, eye pain, muscle tenderness, adenopathy, and hepaosplenomegaly
  • Weil disease (liver and renal failure) may develop during or directly following the acute phase
    • Liver injury is predominantly jaundice with only mild liver enzyme rise
    • Renal failure
      • Nonoliguric hypokalemia with impaired sodium reabsorption and increased distal sodium delivery
      • Selective loss of ENaC channels in proximal ubule
      • Biopsy shows AIN
  • Severe pulmonary hemorrhage syndrome (SPHS)
    • May have frank hemoptysis, but not always
    • Can show up as CXR lower lobe "snowflake-like" densities
  • Arrhythmias, including atrial fibrillation and ventricular tachycardia
  • Circulatory shock
    • Rarely, congestive heart failure from myocarditis
  • Severe disease has high mortality from 5 to 40%

Diagnosis

  • In general, use PCR if early in disease (<7 days) and ELISA IgM followed by confirmatory MAT if further in disease (≥7 days)
Method Sens Spec
Culture 5-50% 100%
Microscopic agglutination test (MAT) 90% >90%
ELISA IgM >90% 88-95%
Latex agglutination 92% 95%
Lateral flow assay 81% 96%
PCR 100% 93%

Microscopy

  • Leptospires can be seen directly under darkfield microscopy
  • Low sensitivity and specificity of blood and urine samples, even if spirochetes are seen (as spirochetes can also be normal flora)

Culture

  • Can get positive cultures from blood and CSF, ideally when collected while febrile and before antibiotics
  • Can inoculate one to blood drops directly into culture at bedside
  • Urine can be cultured after the first week of illness, but need to be processed quickly
  • Use Fletcher's medium (commercial version)
  • Not very sensitive, and cultures can take weeks

Serology

  • Detects IgM antibodies, which appear around day 5 to 7
  • Microscopic agglutination test (MAT) for antigen detection (Sn 90%, Sp 90%)
    • Leptospira antigens are mixed with serum and monitored for agglutination
    • Monitor for a four-fold rise in titres from acute-phase to convalescent phase (repeat 4 to 6 weeks), or a single titre of at least 1:800
    • May cross-react with syphilis, relapsing fever, Lyme disease, viral hepatitis, HIV, Legionella, and autoimmune diseases
    • Cross-reacts between different serogroups
  • IgM ELISA, needs confirmation by MAT (Sn 90%, Sp 90%)
  • Latex agglutination test, needs confirmation by MAT (Sn 80%, Sp 95%)
  • Lateral flow test, needs confirmation by MAT (Sn 80%, Sp 95%)

PCR

  • Loop-mediated isothermal amplification (LAMP) assays and other PCR assays exist
  • Unclear sensitivity and specificity, but has the potential to diagnose disease before antibodies develop
  • Usually done from blood, but can try in urine as well

Differential Diagnosis

  • Other infections, including influenza, hepatitis, dengue, Hantavirus infections or other viral haemorrhagic fevers, yellow fever, malaria, brucellosis, borreliosis, typhoid fever or other enteric diseases, and pneumonia.
    • Think about measles, too, in febrile patients with conjunctivitis (can occur atypically without rash)

Management

  • Treat early in disease course, usually before diagnosis
  • Usual treatment is penicillin G 1.5 MU IV q6h, if severe, or doxycycline 100 mg po bid, if mild
  • Close monitor and intensive supportive therapy required for severe patient
  • May need hemodialysis, but usually recovers renal function
  • SPHS is managed as ARDS with lung-protective ventilation

Prevention

  • Mostly avoidance of high-risk exposures
  • Immunization is possible but rarely done, and covers only specific serovars
    • Even if immunizing animals, it prevents disease but not asymptomatic carriage
  • Can do chemoprophylaxis of high risk occupations with doxycycline 200 mg PO once weekly

References

  1. ^  Eleanor M. Rees, Colleen L. Lau, Mike Kama, Simon Reid, Rachel Lowe, Adam J. Kucharski. Andre Alex Grassmann. Estimating the duration of antibody positivity and likely time of Leptospira infection using data from a cross-sectional serological study in Fiji. PLOS Neglected Tropical Diseases. 2022;16(6):e0010506. doi:10.1371/journal.pntd.0010506.
  2. ^  Wenlong Zhang, Naisheng Zhang, Wei Wang, Fei Wang, Yue Gong, Haichao Jiang, Zecai Zhang, Xiaofei Liu, Xiaojing Song, Tiancheng Wang, Zhuang Ding, Yongguo Cao. Efficacy of cefepime, ertapenem and norfloxacin against leptospirosis and for the clearance of pathogens in a hamster model. Microbial Pathogenesis. 2014;77:78-83. doi:10.1016/j.micpath.2014.11.006.